Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide.

نویسندگان

  • A Barata
  • J Caldeira
  • R Botelheiro
  • D Pagliara
  • M Malfeito-Ferreira
  • V Loureiro
چکیده

The wine spoilage yeast species Dekkera bruxellensis, after inoculation in red wines, displayed three survival patterns characterized by: i) initial lag phase followed by growth and sequential death; ii) initial death phase leading to reduced viable counts followed by growth and sequential death; and iii) death phase leading to complete loss of viability. These survival patterns were observed for the same strain in different dry red wine blends with 12% (v/v) ethanol and pH 3.50, in the absence of free sulphur dioxide. For the same wine blend, these patterns also varied with the tested strain. Under laboratory conditions the addition of 150 mg/l of potassium metabisulphite (PMB) to dry red wine with 12% (v/v) ethanol and pH 3.50 reduced initial cell counts by more than 6 logarithmic cycles, inducing full death within less than 24 h. Winery trials showed that D. bruxellensis blooms were only prevented in the presence of about 40 mg/l of free sulphur dioxide in dry red wine, with 13.8% (v/v) ethanol and pH 3.42, matured in oak barrels. These different amounts of PMB and sulphur dioxide corresponded to about 1 mg/l of molecular sulphur dioxide. Our results therefore demonstrate that the control of populations of D. bruxellensis growing in red wine can only be achieved under the presence of relatively high doses of molecular sulphur dioxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms.

Several microbial species associated with wine were challenged against increasing concentrations of dimethyl dicarbonate (DMDC). The concentration inducing complete cell death upon addition to red wine was regarded as the minimum inhibitory concentration (MIC). In dry red wines with 12% (v/v) ethanol and pH 3.50, the inactivation depended on the initial cell concentration. For an initial inocul...

متن کامل

The e¡ectof sugar concentrationand temperature ongrowthand volatile phenol production byDekkera bruxellensis inwine

The wine spoilage yeast Dekkera bruxellensis was evaluated for the production of 4-ethylphenol under low concentrations (0.02–20 g L ) of glucose and fructose in synthetic media. Measurable amounts of 4-ethylphenol were produced over 0.2 g L 1 of each sugar. The yeast growth rate and amount of biomass formed increased from 0.2 to 20 g L 1 of glucose or fructose, being accompanied by increasing ...

متن کامل

A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499

Dekkera/Brettanomyces bruxellensis, the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase (DbCD) and the vinylphenol reductase (DbVPR), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO2) is used commonly to ...

متن کامل

Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis.

The hemiascomycete yeast Dekkera bruxellensis, also known as Brettanomyces bruxellensis, is a major cause of wine spoilage worldwide. Wines infected with D. bruxellensis develop distinctive, unpleasant aromas due to volatile phenols produced by this species, which is highly ethanol tolerant and facultatively anaerobic. Despite its importance, however, D. bruxellensis has been poorly genetically...

متن کامل

Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources.

A total of 63 strains of Dekkera bruxellensis and 32 strains of Pichia guilliermondii isolated from wine related environments were identified by restriction analysis of the 5.8S-ITS region of the rDNA. These strains were subjected to intraspecific discrimination using mtDNA restriction and RAPD-PCR analysis. The isolates identified as D. bruxellensis yielded 3 different molecular patterns of mt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of food microbiology

دوره 121 2  شماره 

صفحات  -

تاریخ انتشار 2008